Search results

1 – 1 of 1
Article
Publication date: 26 June 2020

Haojia Su, Zhengchun Cai, Zhengwei lv, Yongkang Chen and Yongxin Ji

In this work, the authors used reversible addition-fragmentation transfer (RAFT) polymerization to develop a new cationic acrylate modified epoxy resin emulsion for water-borne…

Abstract

Purpose

In this work, the authors used reversible addition-fragmentation transfer (RAFT) polymerization to develop a new cationic acrylate modified epoxy resin emulsion for water-borne inkjet which have the advantages of both polyacrylate and epoxy resin. The emulsion was successfully used in the canvas coating for inkjet printing. This paper aims to contribute to the development of novel cationic emulsions for inkjet printing industry.

Design/methodology/approach

In this work, the epoxy acrylate was synthesized from RAFT agent and epoxy resin firstly. Cationic macromolecular emulsifier was prepared by RAFT polymerization, using 2,2’-Azobisisobutyronitrile as initiator, 2-(dimethylamino)ethyl methacrylate and styrene as monomer, which was directly used to prepare the emulsion. The influences of the amount of 2-(dimethylamino)ethyl methacrylate on particle size, zeta potential and water contact angle were studied. Finally, the cationic emulsion was used to print images by inkjet printing.

Findings

The emulsion has the smallest particle size, the highest potential and the highest water contact angle when the DM content is 13 Wt.%. The transmission electron microscopy analysis reveals the latex particles is core-shell sphere with the diameters in the range 120–200 nm. The emulsion was successfully used in the canvas coating for inkjet printing. This work will contribute to the development of novel cationic emulsions for inkjet printing industry.

Originality/value

The emulsion was successfully used in the canvas coating for inkjet printing. This work will contribute to the development of novel cationic emulsions for inkjet printing industry.

Details

Pigment & Resin Technology, vol. 49 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 1 of 1